People | Locations | Statistics |
---|---|---|
Tekkaya, A. Erman |
| |
Förster, Peter |
| |
Mudimu, George T. |
| |
Shibata, Lillian Marie |
| |
Talabbeydokhti, Nasser |
| |
Laffite, Ernesto Dante Rodriguez |
| |
Schöpke, Benito |
| |
Gobis, Anna |
| |
Alfares, Hesham K. |
| |
Münzel, Thomas |
| |
Joy, Gemini Velleringatt |
| |
Oubahman, Laila |
| |
Filali, Youssef |
| |
Philippi, Paula |
| |
George, Alinda |
| |
Lucia, Caterina De |
| |
Avril, Ludovic |
| |
Belachew, Zigyalew Gashaw |
| |
Kassens-Noor, Eva | Darmstadt |
|
Cho, Seongchul |
| |
Tonne, Cathryn |
| |
Hosseinlou, Farhad |
| |
Ganvit, Harsh |
| |
Schmitt, Konrad Erich Kork |
| |
Grimm, Daniel |
|
Sánchez-Cambronero, Santos
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Factors Influencing the Efficiency of Demand-Responsive Transport Services in Rural Areas: A GIS-Based Method for Optimising and Evaluating Potential Services
- 2023Mobility-as-a-Service (MaaS) and High-Speed Rail Operators: Do Not Let the Train Pass!citations
- 2022A Graphical Method for Designing the Horizontal Alignment and the Cant in High-Speed Railway Lines Aimed at Mixed-Speed Trafficcitations
- 2021Dynamic Route Flow Estimation in Road Networks Using Data from Automatic Number of Plate Recognition Sensorscitations
- 2020A Low-Cost Automatic Vehicle Identification Sensor for Traffic Networks Analysiscitations
Places of action
Organizations | Location | People |
---|
document
A Low-Cost Automatic Vehicle Identification Sensor for Traffic Networks Analysis
Abstract
In recent years, different techniques to address the problem of observability in traffic networks have been proposed in multiple research projects, being the technique based on the installation of automatic vehicle identification sensors (AVI), one of the most successful in terms of theoretical results, but complex in terms of its practical application to real studies. Indeed, a very limited number of studies consider the possibility of installing a series of non-definitive plate scanning sensors in the elements of a network, which allow technicians to obtain a better conclusions when they deal with traffic network analysis such as urbans mobility plans that involve the estimation of traffic flows for different scenarios. With these antecedents, the contributions of this paper are (1) an architecture to deploy low-cost sensors network able to be temporarily installed on the city streets as an alternative of rubber hoses commonly used in the elaboration of urban mobility plans; (2) a design of the low-cost, low energy sensor itself, and (3) a sensor location model able to establish the best set of links of a network given both the study objectives and of the sensor needs of installation. A case of study with the installation of as set of proposed devices is presented, to demonstrate its viability.
Topics
Search in FID move catalog