People | Locations | Statistics |
---|---|---|
Ziakopoulos, Apostolos | Athens |
|
Vigliani, Alessandro | Turin |
|
Catani, Jacopo | Rome |
|
Statheros, Thomas | Stevenage |
|
Utriainen, Roni | Tampere |
|
Guglieri, Giorgio | Turin |
|
Martínez Sánchez, Joaquín |
| |
Tobolar, Jakub |
| |
Volodarets, M. |
| |
Piwowar, Piotr |
| |
Tennoy, Aud | Oslo |
|
Matos, Ana Rita |
| |
Cicevic, Svetlana |
| |
Sommer, Carsten | Kassel |
|
Liu, Meiqi |
| |
Pirdavani, Ali | Hasselt |
|
Niklaß, Malte |
| |
Lima, Pedro | Braga |
|
Turunen, Anu W. |
| |
Antunes, Carlos Henggeler |
| |
Krasnov, Oleg A. |
| |
Lopes, Joao P. |
| |
Turan, Osman |
| |
Lučanin, Vojkan | Belgrade |
|
Tanaskovic, Jovan |
|
Walraevens, Joris
in Cooperation with on an Cooperation-Score of 37%
Topics
- commodity
- researcher
- vehicle
- attention
- acceleration
- employed
- microsimulation
- intersection
- constraint
- bottleneck
- flexibility
- urban road
- time interval
- VISSIM
- deceleration
- waiting time
- traffic control
- connected vehicle
- communication traffic
- data
- computer science
- queuing
- control device
- estimate
- structural engineering
- indicating instrument
- automotive engineering
- control system
- real time information
- signalisation
- impurity
- vehicle mix
- layout
- customer
- road
- highway traffic
- variable
- production
- employee
- communication system
- airport
- security
- engineering
- motivation
- theory
- automobile
- Statistic
- filter
- T intersection
- show 19 more
Publications
- 2023Expected Waiting Times at an Intersection with a Green Extension Strategy for Freight Vehicles: An Analytical Analysis
- 2022The contribution of connected vehicles to network traffic control: A hierarchical approachcitations
- 2022The contribution of connected vehicles to network traffic control : a hierarchical approachcitations
- 2016Discrete-time queues with variable service capacity: a basic model and its analysiscitations
- 2014A continuous-time queueing model with class clustering and global FCFS service disciplinecitations
- 2011Road splits: smooth or rough passage?
Places of action
document
Discrete-time queues with variable service capacity: a basic model and its analysis
Abstract
In this paper, we present a basic discrete-time queueing model whereby the service process is decomposed in two (variable) components: the demand of each customer, expressed in a number of work units needed to provide full service of the customer, and the capacity of the server, i.e., the number of work units that the service facility is able to perform per time unit. The model is closely related to multi-server queueing models with server interruptions, in the sense that the service facility is able to deliver more than one unit of work per time unit, and that the number of work units that can be executed per time unit is not constant over time. Although multi-server queueing models with server interruptions—to some extent—allow us to study the concept of variable capacity, these models have a major disadvantage. The models are notoriously hard to analyze and even when explicit expressions are obtained, these contain various unknown probabilities that have to be calculated numerically, which makes the expressions difficult to interpret. For the model in this paper, on the other hand, we are able to obtain explicit closed-form expressions for the main performance measures of interest. Possible applications of this type of queueing model are numerous: the variable service capacity could model variable available bandwidths in communication networks, a varying production capacity in factories, a variable number of workers in an HR-environment, varying capacity in road traffic, etc.
Topics
Search in FID move catalog